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1.0 INTRODUCTION

The Integrated Control and Health Monitoring System (ICHM), provides comprehensive control
and monitoring capabilities in support of overall Orbital Transfer Vehicle Engine (OTVE) mission
requirements. The OTVE is considered for space-based missions including Lunar/Mars and orbital
transfer. Such missions would include requirements for long duration space exposure, multiple,
zero gravity engine starts, as well as the capability for deep throttling for landings. Reusability
requirements dictate a service-free life of 20 missions, with 100 starts and a total engine operational
time of 4 hours. The overall system life (with service) requirement is established as 100 missions,
with 500 starts and engine operational time of 20 hours.

The ICHM system includes control and condition monitoring electronics, sensing elements,
software/algorithms and effectors. Effectors are those components of the ICHM which are
commanded by the controller electronics to operate the OTV engine. These include valve actuators,
nozzle extension and gimballing actuators and igniters. An artists rendering of the 7.5K1b thrust
OTVE is shown in Figure 1.

The ICHM system was conceived around the 20K1b thrust baseline OTV engine. This thrust level
was selected because Rocketdyne had available power balance model data at off-design conditions
of; 5% thrust, representative of 20:1 throttling (at mixture ratio 6:1), and full thrust at a mixture
ratio of 5:1. Power balance model data at the on-design condition of 20K1b thrust at a mixture ratio
of 6:1 was also used. The overall ICHM definition was not impacted by the use of the 20Klb
thrust baseline, and only a minor effector change (igniter style) would be considered to adapt the
ICHM results to the 7.5KIb version of the OTVE. The alternate igniter was considered in the
identification of ICHM elements, and the related cost estimate. The schematic diagram of this
OTVE configuration is shown in Figure 2.

Task E6, "Technical Readiness and Development Costs", entailed the definition of the ICHM
system for the OTV engine. The minimal ICHM system was derived from a flowdown of engine
requirements into system functions which, evaluated, and translated into a minimal set of ICHM
elements (sensors, actuators, electronics, and software) to meet requirements with maximal
technology readiness. A baseline design for each of these elements was described in enough detail
to estimate the technology readiness and development costs of the minimal system.

RI/RD 91-150
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Page 4

The details of this selection and estimation process are outlined below, beginning with the
requirements flowdown process and description of minimal ICHM functions, continuing with a
definition and description of the elements and sub-elements of the minimal ICHM system, and
concluding with discussions of these elements' technology readiness and estimated development

costs.
1.1 Requirements Flowdown

Given an input of general, programmatic requirements, the functions of any particular sub-system
can be derived through a flowdown process. The requirements driving ICHM elements came from
surveys of NASA Lewis representatives (program monitors) connected with the Earth to Orbit and
OTYV programs, examination of relevant NASA-LeRC briefings and previous reports, discussions
with Rocketdyne personnel experienced in controls / monitoring and engine systems development ,
review of previous reports on health monitoring systems (OTV-ICHM, HMRSE, ICS, SAFD,
Mass Data Storage, etc.), and discussions with control and monitoring system component
vendors.

The inputs for the flowdown analysis of engine requirements were; A) baseline assumptions, B)
engine system operability characteristics.

Baseline assumptions:
Al. ion in nvi n
(in particular, the ambient conditions over the range of mission profiles)
A2. Mission characteristics
(in particular, the number of engine starts, the time between starts, and the
duration of each engine engagement)
A3. Controlled features of external engine structure
(gimballing of engines by actuation, retractable nozzle, etc.)
A4, i ilitj
(specifically, a continuously throttleable to 20:1, hydrogen—oxygen open
expander cycle, using electromechanical actuation (with pneumatic failsafe
overrides and having approximately 20 Klbs thrust and Isp of 485 seconds with
the extendable nozzle)
AS. redundan k
(desired for sensors, valves, actuators, processor, electronics, harnesses,

software, etc. where practicable)

RI/RD 91-150



Page 5

A6. Minimal ICHM weight
(flight-weight valves, sensors, electronics, etc.)
A7. Expandable system design
(after the minimal system elements are defined, potential growth modes are to be
specified and prioritized.)
In particular the features prioritized during customer discussions (see Appendix
2), with less than a priority value of 10 (on a scale of 1 to 10, where 10 is
highest) are:
» Robust engine-out capability (data was uncertain, but treated as "10" and
thereby included in the minimal ICHM system, this may be a vehicle function)
* Automated diagnostics to determine ability to complete mission (8)
* Incorporation of advanced monitoring and/or control techniques as they
become sufficiently developed and/or available( (6)
* Real-time diagnostics and prognostics tied to adaptive controls/ knowledge
based systems (6)
* Automated pre-mission checkout, includes inspection (4)
 Extended operation at LOX-rich mixture ratios (3)
 Automated life prediction (2)

All of these ICHM-relevant "inputs" can be consolidated and formulated into general and
fundamental, programmatic, "operability" requirements as follows:

Engine S Operability Ct -

B1l. Performance (incorporates A4 and A6)
This represents the need to maintain the specified envelope of thrusts and

mixture ratios to a specified accuracy.

B2. Flexibility (incorporates A7)

This translates into a requirement for an engine controller to actively govern
engine operations during all mission phases: Automated Start/ Restart in Zero-
G (Vehicular Pre-Start Readiness Check, etc.), Tank Head Start/ Idle, Steady
State (throttling control, gimballing, etc.), Normal and Fail-safe Shutdown in
Zero-G, Post-Mission (automated post-shutdown diagnostics for "engine OK/
not OK"), and Between-Mission (possibly with nozzle retraction).

RI/RD 91-150
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B3. Maintainability (incorporates A4 and A7)

This is the capability for automated engine condition diagnosis, via a health
monitoring system ensuring the space-based engine has a service-free life.

B4. Reliability/ Safety (incorporates AS, A6, and A7)

This requirement is enhanced by health (condition plus safety) monitoring,
suitable sensor and electronics redundancies (for single and dual engine
reliability), and appropriate engine control (fail operational / failsafe)
capabilities.

BS. Reusability (incorporates A1, A2, and A3)
This requires the engine to function properly in a space environment with the
given life, start and duration characteristics.

As an initial step, these operability requirements were applied to the most recent baseline engine
schematic being used in current power balance runs, yielding an updated engine schematic. This
update was annotated to show parametric values for states spanning the operating range of thrust
levels and mixture ratios.

1.2 Derivation of ICHM Functions

Each requirement was evaluated for its impact upon the ICHM, and a condensed subset of the
requirements emerged which could be mapped to corresponding minimum functions for the ICHM
to perform.

Condensed Requirement Set: (Quantification based upon NASA-LeRC CTP-ICHM NASA-
Contractor Videoconference Briefing, 1990)

* Nominal Engine Operation Control

+ Start and Cutoff Control in a Zero-G Environment

* Throttling Capability - 10:1

* Performance Control within +1% for Thrust and Mixture Ratio (MR), based on the
expected mission profile and current capabilities

* Single Engine Reliability - fail op/fail safe (0.9975)

* Dual Engine Reliability - fail op/fail safe ( 0.99958)

* Service Free Life - 100 starts, 4 hours of operation

RI/RD 91-150



Page 7

* Space Based Operations - no EVA
» Robust Engine Out Capability.

Each of the OTVE system requirements listed above were evaluated by control system and engine
system engineers in order to determine the minimum ICHM functions needed to meet each
requirement. The requirements were mapped to the corresponding minimum functions which the
ICHM must perform. The results of this evaluation are shown in Figure 3. The dots represent
which OTVE system requirements are fulfilled by the function. The resulting ICHM minimum
functions were grouped by engine operation phase. In addition, Figure 3 shows the Safety
Monitoring Functions which are active during all engine phases and the Engine Diagnostics
Functions, which are active between missions. Figure 4 depicts element definition from

requirements.

RI/RD 91-150
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Requirements and Corresponding Functions

ICHM Requirements

ICHM Minimum Functions

Start and Cutoff in Zero-G

Throttling

Performance Requirements
Single Engine Reliability
Dual Engine Reliability

Service Free Life

Robust Engine Out Capability

Start

Pre-Start Checkout

@] Space Based

Engine Conditioning

®|®] Nomimal Engine Operations

Start Ready Verification

Tank Head Sequence

Tank Head OK Verification

Pump Idle Ready Verification

Pump ldle Sequence

Pump Idle OK Verification

Main Stage Ready Verification

Main Stage Transition

Main Stage OK Verification

Start Transient Abort Sequences

Mainstage

Closed Loop, Proportional Thrust Control

Closed Loop, Proportional MR Control

Multi-Variable (Coupled) Thrust/MR Control

Propulsion Level Thrust Vector Control

Management of Coolant Resources

Shutdown

Mainstage Cutoff Sequence

Engine Safing

Passive Cutoff System

Retractable Nozzle Control

Safety
Monitoring

Redline Monitoring

Failure Detection/Accom Algo/Model

Condition
Monitoring

Maintenance Algorithms

[ Control System Fault Detection

Post Hot-Fire OK Verification

FIGURE 3
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2.0 ICHM ELEMENT DESCRIPTIONS AND LISTS

In this section, the element selections and associated rationales are presented along with summary
lists and descriptions of the sensor, actuator, electronic hardware and software elements and sub-
elements. In selecting many of the system sub-elements, several valid alternative technical
approaches, representing different levels of technology readiness and desirable
performance/physical characteristics, were considered. Where applicable, these alternatives are
discussed as well as the assumptions and criteria underlying the baseline element selections.

The ICHM system elements can be categorized into four distinct areas, see Figure 5:
I. Sensors
II. Effectors (valves, actuators, igniters)
II1. Electronics (controller, data storage, harnesses)
IV. Algorithms and software (control algorithms, health monitoring software)

2.1 Sensors

After the functions were determined, a list of sensors needed to perform the functions was
generated. The measurements were correlated to the function(s) they serve, as shown in Figure 6.

Experienced engine systems personnel participated in the effort to minimize the number of
recommended measurements. The eliminated measurements, the rationale for elimination and a
brief explanation is given in Table 1. Figure 6 does not include the eliminated sensors.

There are seven basic types of measurements used in the minimum ICHM system:
Static pressure

Static temperature

Flow

Speed

Displacement (Continuous)

Position (On/Off)

Acceleration

N N G R W e

The operating ranges for each sensor type in the measurements matrix were obtained through
engine balance data. This data was examined for three "operating points”, shown in Table 2.
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FIGURE 6, ICHM MEASUREMENT LIST (1 of 3)

IGFV position

P1_[Controller internal Pr
P7_|HPOP discharge Pr
P14 [Pneumatic C/O syst. Pr
P15|Tank Pr

P8 |LPOP inlet Pr
P10 |HPOTP interm. seal

PS5 |HPFT discharge Pr

P2 [HP
P3 |HPFP dischar
P4 |HPFP inlet Pr
P9 |HPOT dischar
P11|LPFP inlet Pr
[P12|LPOT dischar
P13[MCC Pc

L1 |GOV position
L2 |MOV position
L4 |FTBV position
L5 |TSV position

L3 [MFV

P6

L6 |Nozzle extender

L7 JOTBV position
L8 [IGOV position

L9
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ICHM MEASUREMENT LIST (3 of 3)
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park igniter output voltage

E3 |valve driver output current
E4 | valve driver output voltage

M1 |fuel flowrate
spark igniter output current @]

FLOW
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HPFTP speed
VIBRATION

V1 |HPFTP vibration
ELECTRICAL

M2 |oxidizer flowrate
S2 |HPOTP speed
S3 |LPFTP speed
S4 | LPOTP speed
V2 |HPOTP vibration
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Measurement

Explanation for Elimination

Location and Type Rationale of Measurement

Hydrostatic Bearing Inlet Redundant Would duplicate information given by pump

Pressure (8) discharge pressure

Fuel Injector Pressure Ineffective This AP information would not provide
conclusive condition assessment of the
injector, due to the cancelling effects of
erosion and corrosion

Combustion chamber inlet Redundant Would duplicate information easily

(after GOV) Pressure calculated from the LOX main turbine outlet
pressure and the GOV resistance

Oxidizer CC Injection Redundant Would duplicate information easily

Pressure calculated from the LOX boost turbine
outlet pressure and the MOV resistance

Main LOX Pump Discharge Redundant Would duplicate information given by main

Pressure LOX turbine inlet pressure

Boost LOX Turbine Inlet Redundant Would duplicate information given by main

Pressure LOX pump discharge pressure

Main LOX Turbine Inlet Redundant Would duplicate information given by main

Pressure fuel turbine discharge pressure

Boost LOX Pump Redundant Would duplicate information given by LOX

Discharge Pressure tank pressure, which is the more useful

Main LOX Turbine Seal Redundant Would duplicate information given by the

Drain Pressure seal inlet and purge pressures, due to the
relative incompressibility of LOX

FTBV Skin Temperature Unnecessary Since this valve never needs to be fully
closed, sealing is not an issue

TSV Skin Temperature Unnecessary Specific knowledge regarding leakage in
this valve is unnecessary; general
information is contained in the pump
discharge pressures

Fuel Valve Skin Unnecessary Specific knowledge regarding leakage in

Temperature this valve is unnecessary, since
characterization will be sought during
development; sufficient information is
contained in the MFV skin temperature

Main Fuel Turbine Redundant Would duplicate information given by the

Temperature nozzle coolant exit temperature

Main Oxidizer Turbine Unnecessary Would provide (unnecessary) information

Temperature regarding pump efficiency only;
unjustifiable in view of harsh environment

Boost Fuel Turbine Unnecessary Information unnecessary and of limited

Temperature value

Main Fuel Turbine Flow Unnecessary Characterization of injector during design
and development will ensure flow stability

Powerhead Acceleration Unnecessary An optional feature

Table 1. Measurement List Reduction Rationale

RI/RD 91-150
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Design Point Thrust Level Mixture Ratio
On-design engine 100%, 20K 6:1
Off design (1) 100%, 20K 5:1
Off design (2) 5%, 1K 6:1

TABLE 2, ENGINE BALANCE OPERATING POINTS
These engine balances, shown in Figures 7, 8 and 9, show the flow, pressure and temperature at

various engine locations. All of this data, taken together, span the range of operating conditions

currently under consideration for the OTVE engine and represents the range of conditions that will

be seen by these sensor types. Sensor selections, shown with accompanying rationale in Table 3,

were driven by operating condition ranges and needed measurements.

Mggsgrgmgn; l Ype gng
Sensor Technology

Rationale

Static Pressure:

Silicon on Sapphire
Pressure Sensor

History of long term stability (0.01%/year). Withstands
continuous exposure to temperatures of approximately
750°F.

Static Temperature:

RTD Temperature
Sensor

Proven technology, used on the SSME with a high degree
of accuracy and stability.

Flow:
Turbine Sensor

Proven technology, used for SSME fuel with a high
degree of accuracy.

Speed:
Variable Reluctance

Proven technology, used on the SSME.

Continuous
Displacement:

Resolver

Selected for degree of accuracy needed for deep
throttling. Use of this sensor will require some testing in
the development of the system.

On/ Off Position:
Eddy Current

Compact size, used to detect position for fully open or
closed valve. Proven in similar applications on the SSME
Technology Test Bed program.

Acceleration
Piezo Electric

Proven technology, used on the SSME.

TABLE 3, SENSOR SELECTIONS

RI/RD 91-150
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OTV ENGINE BALANCE

\.

OTV ENGINE

OFF-DESIGN:
THRUST 1K (5%)
MIXTURE BATIO: 6:1

ENGINE BALANCE:
FLOW {mass-lb/sec)
PRESSURE (PSIA)
TEMPERATURE (R)

OXIDIZER INLET

: OFF-DESIGN VALUES (2)

MOV

1.84

127
165

Fiaqure 9

FUEL INLET
.306
18.82
-t 37.80
078V FUEL FUEL
BOOST BOOST
10 TURBINE PUMP
166 §
1431 4
”\_%V_Az MAIN MAIN
TURBINE FUEL FUEL
TURBINE [ PUMP
087 >
157
1425 010 31
TSV o 3
1464 50.22
e oo
HEX | Mﬁ TBV
AP WA P
FIV
GOV Z
MFV Z
f 31
362
50.22
N
4
.003 Ho
r— 335
> > TANK
FTCV

7-19-90
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Table 4 shows the selected sensors, the operating ranges, and the several optional sensors. The

locations of the sensors on the engine are shown in Figure 10.
2.2 Effectors

The basis for the effector element selection compares available or emerging designs and the
requirements of a particular application. Rocketdyne's ongoing development efforts are included
in the valve and actuator technologies. A particular goal is a reliable, accurate, easily maintainable
electric actuated propellant valve capable of deep throttling. Commencing with the Advanced
Space Engine (ASE), an IR&D task was started in 1982 to evaluate and develop electric actuated
main propellant valves for orbital transfer vehicles (OTV). This work resulted in design and
characterization of a prototype main oxidizer valve for the 15K thrust RS-44 expander cycle
engine. An advanced propellant valve based on the prototype main oxidizer valve design is
recommended for the OTV engine.

It is assumed that the following elements are supplied by the vehicle contractor:

I. Propellant tank pressure regulation components (regulator/ relief valves)
Fuel Tank Pressurization System using autogenous gas from engine
Oxidizer Tank Pressurization System- using autogenous gas from engine

II. Inlet Propellant Valves
Fuel Inlet Valve
Oxidizer Inlet Valve

(The propellant tank isolation check valves are considered as part of the engine system as they are
contained within the engine to tank pressurization lines. In order to provide a more complete
design description, system requirements will need to be established for these check valves as well

as the nozzle extender and thrust vector actuators).

The ICHM has the following propellant valves and components for engine control (component
types and positions are identified in Table 5):

1. Main fuel valve (MFV)
2. Main oxidizer valve (MOV)

RI/RD 91-150
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10.

12.
13.
14.

Turbine bypass valve (TBV)
Oxidizer turbine bypass valve (OTBV)
Turbine shutoff valve (TSV)
Gaseous oxidizer valve (GOV)
Oxidizer igniter valve (OIV)

Fuel igniter valve (FIV)

Oxidizer tank check valve (OTCV)
Fuel tank check valve (FTCV)
Pneumatic fail-safe system (PFS)
Nozzle extender actuator (NEA)
Thrust vector actuator (TVA)
Augmented spark igniter (ASI)

Page 21
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. P FLUiD | ENGINE VALVE
NO FUNCTION TYPE u MODE POSITION
1 Main Fuel Valve Venturi Ball Valve LH2 l;l? 852“
(MFV) Electric Actuator
On-Otf Control THI OPEN
S OPEN
2 Main Oxidizer Valve Sector Ball Valve LOX MS THROTTLED
(MOV) Electric Actuator Tli-lll T'g:gTSTElgD
Modulating Control S OLOSED
3 Turbine Bypass Sector Ball Valve GH2 MS THROTTLED
Valve (TBV) Electric Actuator Tl::-:l 825“
Modulating Control p OPEN
4 Oxidizer Turbine Sector Ball Valve GH2 l\g? mggﬁ{gg
Bypass Valve Electric Actuator
; THI THROTTLED
(0OTBV) Modulating Control S OPEN
5 Turbine Shutoff Venturi Ball Valve GH2 MS OPEN
Valve (TSV) Electric Actuator T’Lll C?gggo
On-Off Control S CLOSED
6 Gaseous Oxidizer Poppet Valve GOX MS CLOSED
Valve (GOV) Solenoid-operated T';'l nggﬁo
On-Off Control S CLOSED
7 Oxidizer igniter Poppet Valve GOX MS OPEN
Valve (OIV) Solenoid-operated Pi OPEN
On-Off Control Tg' OPEN
8 Fuel Igniter Valve Poppet Valve GH2 MS OPEN
(FIV) Solenoid-operated TF;" %E“
On-Oft Control < OPEN
9 Oxid. Tank Check Check Valve
Valve (OTCV)
10 Fuel Tank Check Check Valve
Valve (FTCV)
11 Pneumatic Faiisafe Solenoid-operated
System (PFS)
12 Nozzle Extender Electric Actuator
Actuator (NEA) On-Off Control
13 Thrust Vector Electric Actuator
Actuator (TVA) 6-15 deg Modulating Con-
trol in both X- and Y- axes
14 | Augmented Spark Spark igniter . :
Igniter (ASI) %’% é z’; -
ENGINE MODE LEGEND: (20K Thrust) THI = TankHead Idle  S=Start
MS = Main Stage Pl = Pumped-idie

Table 5. Effectors
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A brief discussion of the control valve functions during engine start, tank head idle, pumped idle,
and main stage operation is presented on the following pages.

Main Fuel Valve (MFV)
The MFYV is an electric actuated on/off cryogenic valve which opens fully to permit fuel flow at
engine start and remains open throughout all of the engine operational modes. Minimum pressure

drop in the fuel circuit is required along with capability for tight shutoff.

Main Oxidizer Valve MOV

The MOV is a fully modulating cryogenic valve responsible for mixture ratio control. During start
and tank head idle the valve is fully closed forcing LOX through the GOX heat exchanger. At
pumped idle the valve is ramped, open loop, to an intermediate position providing limited oxidizer
flow to the engine. At main stage the valve opens more fully and is under closed loop control on
mixture ratio. This valve must be capable of tight shutoff.

Turbin

The TBYV is a modulating valve with no tight shutoff requirement which controls engine thrust
by throttling fuel flow to the turbines. During start and tank head idle this valve is full open
allowing fuel from the nozzle to bypass the turbines and flow through the GOX heat
exchanger to provide gaseous oxygen flow to the igniter and combustor. During pumped idle
the TBV is maintained full open as the turbine shutoff valve (TSV) is opened which results in
some fuel flow to the turbines. At mainstage the TBYV is in its most throttled position
modulating under closed loop control on thrust.

Oxidizer Turbine B Val OTBY
The OTBYV is similar to the TBV in that it is also a modulating valve with no tight shutoff
requirements. Its primary purpose is to balance the oxidizer and fuel pump turbines. During start
and tank head idle the valve is at full open or an intermediate position but does not control any flow
as the TSV is closed. During pumped idle (with the TSV open) the OTBYV is ramped, open loop,
to an intermediate position which forces some fuel through the oxidizer main pump turbine. At
mainstage the OTBYV is in its most throttled position under closed loop control on pump turbine

balance.
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Turbine Shutoff Valve (TSV)

The TSV is an on/off valve which is closed during start and tank head idle mode with minimal
turbine gas flow such that the turbines do not spin. The valve is ramped to full open during
pumped idle and remains open at main stage. Like the MFV, a minimum pressure drop is

required.

G Oxidizer Valve (GOV'
The GOV is a two way (on/off) direct or pilot operated solenoid valve, open only during tank head
idle operation providing gaseous oxygen flow to the combustor. During the transition to pumped

idle the valve is closed.

i ] FI
The igniter valves are two way (on/off) solenoid valves which provide gaseous oxidizer and fuel to
the igniter throughout all engine operational modes.

Propellant Tank Check Valves (FTCV, OTCV)

The FTCV and OTCYV prevent backflow from the cryogenic propellant tanks to the turbines when
the engine is inactive. The check valves also serve to isolate propellant between each engine.

Nozzle Extender Actuator (NEA)

The NEA is a linear electrically actuated system which extends a radiation cooled nozzle.
Following engine shutdown, the NEA retracts the nozzle back to the stowed position when

required.

Thrust Vector Actuator (TVA)

The TVA consists of two linear electric actuators which provide gimballing control. The TVA will
provide 6 to 15 degrees modulating control in both x and y axes.

Augmented Spark Igniter (ASD
Two Augmented Spark Igniters (ASI) will be used to ensure reliability. The components for the
igniter include:

Electronic ignition exciter (2)
High-voltage cable (2)
Spark igniter plug (2)

HW N =

Ignitor injector/precombustor
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All of the components are separable. Spark igniters and the igniter injector are installed using
threaded joints. Electronic components are dual redundant. Failure of any single electrical
component will not cause ignition failure. Ignition is accomplished by activating the spark system
and introducing propellants into the igniter. These propellants are injected in a pattern that provides
cold fuel surrounding the oxidizer. This pattern ensures cooling so an additional supplemental
cooling system is not required. The ignition system is reusable and restarts without component

replacement or servicing.

2.2.1. Effector Desien Descripti

Three types of propellant control valves are proposed for the OTV engine: 1) sector ball valve, 2)
venturi ball valve and 3) solenoid operated poppet valves. The sector ball valve will be used for
low torque applications. For low pressure drop the venturi ball valve will be used. Low flow
ignition and control applications will employ either direct or pilot operated solenoid valves.

The electric actuated MOV consists of a sector ball gate to throttle flow that is supported on integral
shafts by a pair of ball bearings, and positioned by an electromechanical actuator with closed loop
position feedback from a resolver off the ball shaft. The gate configuration is basically one-half of
a spherical shell. Sealing is provided by shaft seals and ball seals of DuPont Vespel. Modular
construction permits easy disassembly of the actuator, valve module and seat package from a single
valve housing flange. The valve housing can therefore remain attached to the propellant ducts.

A key feature of the Rocketdyne sector valve is the continuous-contact seat seal design. This
design is basically similar to the very successful SSME shaft seal subsequently used in the ASE
and RS-44 integrated component evaluator (ICE) propellant valves. These designs maintain micro
inch level of leakage gap under extremely high bearing loads which is achieved through the unique
characteristics of DuPont Vespel SP-211, a combination of polyimide, graphite, and Teflon. The
material has demonstrated compatibility with LOX and LH2 over the full range of expected
operating conditions. Leakage can be held to less than 10 scim helium, however, higher limits are
recommended because system allowances are considerably greater and lower costs result. All
external valve leakage can be collected by use of redundant shaft seals and two static flange seals
with the intermediate cavities connected to a single housing port for safe venting overboard. This
feature permits potential "growth" instrumentation for health monitoring of each valve for external
leakage before, during and after each engine firing.
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The seat seal package is a modular assembly comprised of a retainer, snap ring, wave springs,
loader, and seal. The wave springs provide load to seal at low pressure and also overcome friction
forces at cryogenic temperature. All seal design parameters are anchored by test data and defined
by computer analysis which permits definition of an optimal design. Equations for seal reaction
forces consider thermal contraction, radial seal clearance or interference, pressure differential,
loader force, friction and seal material elastic parameters.

Coupling the valve shaft to the actuator is a metal bellows which provides for thermally induced
axial motion, is radially stiff, and has no free play. The valve and actuation system is designed to
maintain backlash and elastic windup to less than 0.3 degree under maximum load. Response will
be less than 1.0 second full travel under maximum load with capability of less than 0.2 second at
reduced or aiding loads to permit fast shutdown as required.

The MFV requires a larger flow area than the MOV due to lower pressure drop requirements. A
full ball with venturi inlet and outlet flow sections to reduce delta P will be used with the MFV to
permit a common valve size with the MOV. Thus the MFV will be identical with the MOV except
for the noted variations in closure and flow geometry to provide low pressure drop with nearly
common cryogenic propellant valves.

Turbine Gas Valve Design

Turbine gas valves (OTBV, TBV, TSV) are patterned after the MOV but with several variations.
Valve body, gate and bearing materials must withstand temperatures to 950 degrees F and
pressures to 7674 psia. Although stringent leakage requirements are not required for the seat seal,
the shaft seal may see high temperature. Consequently, two paths will be followed to address
function of the shaft seal:

1) A carbon/graphite seal will be designed for operation at 950 degrees F, but with the
actuator both insulated and thermally isolated from the valve.

2) As backup, polyimide shaft seals will be thermally isolated from the valve with the
actuator to prevent seal temperatures exceeding 350 degrees F.

The TSV will have the same full ball venturi flow geometry as the MFV to provide low pressure

drop. Additionally the TSV has a requirement to shut-off sufficient turbine gas flow such that the
turbines do not spin during tank head idle. Two alternative seat seal designs considered are: 1) an
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all metal dry film lubricated seat seal as used on the RS-44 TBV and OTBYV, and 2) a
carbon/graphite design mated with a molybdenum seat tube insert which provides a very close
match in thermal expansion with the carbon seal material. Fortunately, this seal needs to operate
only at relatively low pressure differential with liberal leakage allowance. Primary parameters to be
considered in design are therefore long life and reliability.

Solenoid Operated Valves

The GOV, IGOV and IGFV are two-way solenoid operated valves providing on/off control of
GOX and GH2 propellants at low flow rates. Key features are rugged simplicity providing high
reliability and low cost. Dual coils can be provided for electrical redundancy as required.

Check Valves
Propellant tank isolation between the OTV engines will be provided by the OTCV and FTCV.

These are poppet-type check valves which can be used in series for redundancy as required.

The pneumatic fail-safe system consists of a regulated pneumatic supply, pneumatic control
assembly (PCA) and fail-safe actuators mounted to the necessary engine control valves needed to
effect a safe engine shutdown. All control components will have redundant electrical actuator
systems such that upon any electrical failure the secondary system can provide fail-operation of the
OTYV engine. Upon failure of the secondary system, the actuator will lock in position until the
pneumatic fail-safe system is energized from the PCA to provide a sequenced valve deactuation that
will safely shutdown the engine.

Nozzle Extender and Thrust Vector Actuators

These components are electromechanically actuated with dual electrical redundancy.
2.3 Electronics

The intent of the control system block diagram is to indicate the features which will satisfy the
stated requirements and perform the minimum functions necessary for successful OTV operation.
A dual channel architecture is the baseline, with additional redundancy possible, each with its own
power supply and heater. The architecture will be modular to accommodate additional capability,
new technologies, or increased redundancy.
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Single channel controller functions are broken down into three main areas; input processing,
control processing, and output processing. Input processing contains the interface between the
sensors ( temperature, pressure, speed, flow, and acceleration) and the controller. Control
processing contains the interface to the vehicle ( telemetry information and vehicle commands) ,
performs high level control like thrust / mixture ratio control, and any real-time algorithms.
Finally, the output processing section contains the effector control drivers (solenoids, igniters, and
closed loop actuators) and receives all valve positions (RVDT and LVDT). All functional areas
connect to the data interconnect busses which will be standardized types of parallel busses.
Functional areas may be made up of several circuit cards, each with a separate interface to the
parallel data busses.

Channels are complete with their own separate power supply and heater. Power supplies are
responsible for all power for their respective channel including sensors and valves and will be
electrically isolated. The heater is necessary to keep electronics from becoming cold enough to,
among other things, crack solder joints or deteriorate capacitors. If enough electrical activity is
present in the vehicle between missions, for example by telemetry, heaters may be eliminated.

Each of the three main functional areas will be linked to the other channel(s) via the data busses.
The type and extent of redundancy management has yet to be determined. However, an up front
goal will be to minimize software complexity by simplifying the channel interaction. Technological
advances in VLSI should improve channel reliability.

A preliminary schematic of the controller architecture is shown in Figure 11.
2.3.1 Input Electronics

The function of the Input Electronic module is to condition and convert engine sensor data to digital
data for processing. Data to be measured includes temperatures, pressures, speeds, flows and
acceleration.

For cryogenic temperature measurements, RTD's are best suited because the signal output levels
are higher. A constant current supply will provide an accurate reference with the voltage drop
across the RTD being directly proportional to resistance. For hot gas temperature measurement,
thermocouples may be used because of their inherent structural ruggedness. Use of thermocouples
will require additional circuitry to amplify the low level signals and provide ice point referencing.
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Pressure sensors require an accurate voltage reference from the Input Electronics and provide a
differential bridge output. The output of the bridge is filtered and amplified and converted to a digital
value for scaling in the Input Electronics Micro-controller (IEMC).

Speed and flow processing are handled in a similar manner. An EMF generated by a rotating
magnetic field is picked up in a coil and the period of the generated waveform is measured using a
time measurement counter. A zero crossing detector is employed to determine beginning and
ending of a measurement period.

Signal Conditioning will consist of passive input filters on all inputs to reject EMI followed by a
low pass filter for anti-aliasing and buffering where required. Temperature and pressure data
together with any other analog data will be multiplexed into a 12 bit A-D converter for conversion
to digital data.

The IEMC will perform reasonableness test based on engine model data to determine the condition
of the engine sensors. Scenarios considered to accommodate unreasonable sensors include;
excluding that sensor from calculations and using the channel B sensor, or possibly using a
"weighted sum of system health parameters" model, with weightings adjusted to compensate for
lack of the unreasonable sensor value. The IEMC will also control self test of the Input Electronics
to ensure the validity of all data reported to the Controller Bus. It will perform the necessary
scaling of data and report it on the Controller Bus for all users, such as the Engine Controller or the
Condition Monitor.

The IEMC will consist of a 32-bit processor with a fixed program memory (PROM) and static
memory (RAM) for working memory. Because its operation is critical to the input electronics, the
IEMC will be a self checking controller and the memory will be an error detection and correction
memory. It will provide the protocol to communicate to the Controller Bus as well as do
processing. The input processing block diagram is shown in Figure 12.

2.3.2 Controller Processor

The function of the Control Processor (CP) is to receive vehicle commands such as engine
checkout, start, throttle or cutoff and control the engine operation. Mixture ratio and throttle
control will be done in the CP using data from the input electronics and the output electronics and
sending valve position commands to the output electronics. Engine data will be stored in a bulk
memory during engine operation for processing after cutoff. Fifty two measurements have been
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identified and fifty measurements per second will require about 1.5 Mbytes of memory for 10
minutes of engine operation. Data which requires a higher update rate, such as tracking filters or
other special processing must be supported by special purpose processors to pre-process data for
storage in the bulk memory. input and output electronics data received in the CP has been fully
qualified and can be used without further reasonableness testing.

The CP will consist of a 32-bit processor with a fixed program memory (PROM) and static
memory (RAM) for working memory. Because its operation is critical to engine control, the CP
will be a self checking processor and the memory will be an error detection and correction

memory.

The Controller Architecture will have two or more independent bus interfaces depending on the
necessary redundancy to achieve the required reliability. Each input electronics and output
electronics will be capable of communicating on each bus to provide the necessary cross strapping
of engine data. The control processing block diagram is shown in Figure 13.

2.3.3 Engine Vehicle Interf ; p Suppl

The elements which will be used to interface with the vehicle will include digital telemetry bus
electronics, digital vehicle bus electronics, a telemetry bus, and a vehicle command bus. These
elements are also shown in Figure 13.

The function of the power supply is to convert the 28 volt vehicle power to the necessary digital
and analog voltages to power the controller circuits. The power supply must also contain fault
monitor circuits to detect loss of input power and power supply failures.

2.3.4 Output Electronics

The function of the Output Electronics (OE) (Figure 14) unit is to receive valve position commands
from the Control Processor and generate the necessary voltage and current drive required to operate
the engine valves and solenoids. The OE will also monitor the valves for proper response by
measurement of valve current, voltage and position. The OE will provide the command and
monitoring for the ignitor modules. All solenoids and solenoid drivers will be designed to operate
from 24 to 32 volts DC to make use of standard vehicle power and the solenoid drive current
should be isolated from the controller power and ground.
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Valve drivers must drive both on-off and proportional valves with high efficiency if the design
goals of the control system are to be met. New valve drivers being developed for the automotive
industry offer efficient operation and have built in self test features. Electromagnetic actuator
drivers present a challenge both in circuit design and packaging. High efficiency amplifier design
must be developed for increased efficiency.

Measurement of valve position in the past has employed RVDT'S and LVDT'S, which are not
capable of better accuracy than 1% to 2%. More accuracy is required and other techniques such as
radiometric RVDT'S, optical position encoders, and resolvers can provide 0.1% accuracy.
Monolithic integrated circuits are available for circuit implementation of all these techniques.

Spark ignitor control and monitoring may be provided in the output electronics. To detect
degradation in the spark ignitor, it will be necessary to design a monitor circuit which measures
the spark energy and compares it to nominal values. A review of SSME experience will be
conducted to determine the necessity of this check.

The OE functions will be controlled by an output electronics micro-controller (OEMC) with a
stored memory program. Data such as valve position commands will be received in the OEMC via
the Controller Bus. The OEMC will convert the command to a form required by the valve driver
and verify that the valve responded. Monitoring of the valve drivers will also provide information
about faulty drivers or open coils and this will be put on the bus for the health monitoring function.
The OEMC will consist of a 32-bit processor with a fixed program memory (PROM) and static
memory (RAM) for working memory. Because its operation is critical to the output electronics self
test function the OEMC will be a self checking processor and the memory will be an error detection
and correction memory.

2.4 Algorithms and Software

The ICHM software can be broken down into three categories: Engine control (includes both
performance regulation and implementation of health monitoring decisions), Health Monitoring
(Safety monitoring,Condition Monitoring, including Maintenance assessments), and General/
Executive functions (those which support operation of the ICHM system rather than implementing
specific OTVE operating requirements and includes sensor calibration, measurement validation,
and communications functions). Table 6 describe the software sub-elements organized into these

categories.
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‘CONTROL "HEALTH MONITORING

ENGINE CONTROL SAFETY FEATURES
Pre-Flight Operations Redline Monitoring
Start Sequencing Engine Fault Emergency Shutdown
Tank Head ldle Operation Control Failure Emergency Shutdown
Pumped Idle Operation
Mainstage Operation CONDITION MONITORING
Shutdown Sequencing System Condition Monitorin
Post-Flight Operations yPre-FIight Checkout 9

Post-Flight Checkout
In-Flight Performance Monitoring
Data Storage

GENERAL/EXECUTIVE Component Condition Monitoring
Processing Cycle Control High-Speed Turbopump Monitoring
Exception And Interrupt Control Data Storage

Computer Initialization

Redundancy Management

Command & Data Interface Control

Input/Output Control PROCESSING AND DIAGNOSIS

Health Monitoring Data Processing
Data Presentation
Performance Data Processing

Table 6. ICHM Software Element Breakdown
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Preliminary software functions for the minimal ICHM system are defined based on the ICHM
functional requirements previously identified. In most cases, specific requirements cannot be
established until the OTVE design is further defined. Therefore, the list of software functions is
intended to be representative of the software expected for a minimal ICHM rather than an all
inclusive baseline. In general, the development of the ICHM System algorithms and software
should be straightforward, with low risk in terms of cost and schedule.

2.4.1 Engine Control

Engine control includes the code for execution of the operating sequence and closed loop control
algorithms in controlling the engine through all its modes of nominal operation.

Engine safety includes the code for monitoring of engine redlines and for executing the appropriate
emergency engine shutdown depending on whether and engine fault or a computer control failure

had occurred.

2.4.1.1 System Condition Monitoring The system health monitoring code checks the pre-
flight health and readiness of the engine and ICHM system. It also performs limited in-flight

monitoring of system health. System health monitoring requirements for the minimum system
include at least: continuous in-flight and pre-flight checkout; engine system readiness/health
assessment; limited continuous monitoring of the ICHM system health; and transfer of monitoring
data to the vehicle for storage and/or telemetry. Pre-flight checkout may be considered as "post-
flight", in that any pre-flight checkout after the initial mission should recognize problems caused by
the previous use.

2.42 Condition Monitori

2.4.2.1 Component Condition Monitoring The component health monitoring code

monitors operation of the high-speed turbopumps. In conjunction with signal
processing/conditioning hardware, it extracts health indication signature information from sensor
data and prepares it for data transmission. At this time, it appears that the high speed turbopumps
are the leading candidates for component health monitoring. No other engine system components
appear to have a significant probability of failure or major degradation during the specified service
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free life. The minimal system will therefore include the sensors, signal conditioning and
failure/degradation software for monitoring the high-speed fuel and oxidizer turbopumps. If future
analysis or test of other engine components reveal significant wear or other degradation/failure

mechanism, appropriate sensors, signal processing and monitoring algorithms will be developed.

2.4.2.2 Processing and Diagnosis Maintenance decision and performance evaluation code

operates in general purpose computers to process monitoring data and present it in a meaningful
form for analysis by logistics and engine performance experts.

2.4.3 Executive

Real-time executive code manages the operation of all other software and provides "housekeeping”
services. It includes processing cycle control, exception/interrupt handling and computer
initialization. In addition the executive manages the redundancy of all control system elements,
controls the command and data interface with the vehicle and and controls the sensor input and
actuator output channels.

RI/RD 91-150



Page 42

3.0 ELEMENT TECHNOLOGY READINESS FOR MINIMAL SYSTEM

ICHM functions and ICHM system elements were defined in previous subtasks. The ICHM
elements which emerge from the ICHM functions fall into the following categories:
1. Sensors
2. Effectors
3. Electronics (harnessing and controller hardware)
4. Software/ Algorithms
A. Engine control algorithms (feedback control loops of valve position measurement/
control and fine-tuning of performance)
B. Safety algorithms/ advanced redline control algorithms done in real-time and used
for control decisions
C. Condition monitoring (life prediction/ maintenance analysis/ component
diagnosis) algorithms not necessarily in real-time

Items B and C, taken together constitute Health Monitoring algorithms. A, B, and C: Integrated
Control and Health Monitoring algorithms. All elements together make up the ICHM system

Table 7 presents the technology readiness levels definitions, from 1 to 7, as furnished by NASA in
the task work statement. Technical readiness was determined by review of the technical staff, with
specific element expertise. Elements were separated into four categories: sensors, electronics,
effectors, and software/ algorithms. A summary of the element categories, technologies or
functional types, and element readiness levels is shown in Table 8 on the following pages.
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Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Page 43

Technology Readiness Levels: Definition

System validation model demonstrated
in space; system ready for space-based
applications

System validation model demonstrated
in simulated environment; test of an
equivalent of the final system
configuration

Component and/or breadboard
demonstrated in relevant environment

Component and/or breadboard
demonstrated in laboratory

Analytical and experimental proof-of-
concept for critical function and/or
characteristic; conceptual design test

Technology concept/ application
formulated; conceptual design drafted

) ]
L

Basic principles observed and reported

TABLE 7
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4.0 ESTIMATE REMAINING DEVELOPMENT COSTS FOR MINIMAL SYSTEM

Cost estimates were developed based on similar component or system development efforts. A
summary of the estimating results is presented in Table 9. A brief basis of estimate is stated for
each category of ICHM elements, followed by general assumptions or detailed estimating
guidelines used in the respective estimates. These estimates are considered accurate to +/- 20%.
An important underlying assumption is based on discussions with NASA-LeRC; that is that the
level 6 validation testing engine/test stand support will be provided by NASA. This means that the
Rocketdyne level 6 efforts encompass required on-site support to testing, analysis, and actions
based on results of that testing. No Rocketdyne labor is estimated for running the engine in the test

stand.
ntroller El nics Hardw

The controller and associated electronics were based on the SSME controller, a full authority
digital rocket engine controller, which is the closest existing similar hardware program available.
The entire list of non-recurring tasks portion of the basis of estimate index for the SSME Controller
Block II proposal was examined and complexity factors were applied to extrapolate ICHM
controller electronics estimates. Additionally a set of design ground rules was established which
are presented in Appendix 1, and general assumptions were made. The electronics labor cost
estimate is about $23M, and related hardware is $3M. This portion of the effort is one requiring
the longest development schedule, 60 months.

General Assumptions

1. Utilize a standardized bus such as, VME, MULTIBUS, Future Bus, 1553

2. Utilize a standardized single board computer with integrated bus interfaces. The design will be
brought up to a space-rated qualification.

3. Extensively use hybrids or VLSI to reduce size and weight.

4. Assume the same close technical and cost control by NASA as done during the development
efforts on SSME Block I, Block II controllers.
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Sensors

Sensors development cost estimates were based several program efforts. These include the
Peacekeeper Stage IV, the SSME TTBE and Kinetic Energy Weapons programs. For each sensor
selection considered, the program with the most up to date applicable cost data was used as a cost
basis. A summary of the sensor cost estimates is presented in Table 10.

Sensor Estimating Guidelines

The basis for bringing a sensor to technology readiness level 5 involves qualification. This proves
the sensor design in a simulated environment. This activity would require 6 manmonths of effort
per sensor, over a duration of 9 months.

To get to level 6 certification from level 5 requires proving the design in a test stand green run.
Going to level 6 assumes engine availability for 17 tests at 300 seconds each. Certification time is
5000 seconds. To recertify a currently certified sensor to a new engine requires manpower of 510
hours (30 hours per test for 17 tests). The adaptation of a level 7 sensor to the target application
requires 20 hours per sensor.

Effectors

The valve actuator estimates were based on actual hardware development experience in similar
technology applications (eg electromechanical or pneumatic driven). The nozzle extension and
gimbal actuators estimates were based on engineering judgement, experience, and operational
requirement interpretation. The igniter estimates were based on applications in similar-sized
injectors from recent and ongoing hardware development programs. The Space Transportation
Main Engine (STME) gas generator (adapted from the SSME program) is used as the basis for the
augmented spark ignitor, and the subscale liquid oxygen/hydrocarbon propellant injector is used as
the basis for the plasma torch ignitor. A summary of the effector cost estimates is presented in
Table 11.

Effector Estimating Guidelines

Valves: The philosophy to this approach is to design the valves with the eventual flight application
in mind. Granted, a flightweight valve is not required in a Focused Test Bed environment, but
overall program cost (to get to the ultimate flight article) are significantly reduced by eliminating a
second design iteration to go from a heavy, large envelope breadboard valve to the flight-sized
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article. This approach did, however, consider applying an "experimental” hardware method
(7R drawings, Category VII) to the design process. This facilitates the development process by
requiring substantially fewer reviews and signatures, and far less processing, for the
implementation of iterative design changes through the development process. 7R drawings are
engineering drawings used for experimental hardware. They do not undergo full configuration
management and control, and do not go through the formal engineering release process like 9R
(Category II) drawings do. A more detailed explanation of these drawing types is found in
Appendix II, Engineering Drawings, Categories and Uses. This experimental, 7R drawing
estimating basis is appropriate and was adopted as a result of discussions with LeRC during the
course of this program. The sum estimate of valve design and design verification testing (DVT)
labor for all valves and the pneumatic control assembly is 45,344 hours.

Actuators: This cost is based on the SSME actuator evolution from conceptual design to
development test for a deliverable product. In this case an outside vendor desi gned, developed and
tested the actuators, and Rocketdyne provided support. The team worked on a man-rated design
that met the fail-op/fail safe requirements which are found on the ICHM program. Although the
subject SSME actuator is hydraulic, hydraulic actuator technology at the start of that development
is comparable with today's commercially existing EMA technology. The estimated cost was $6M
for the ICHM effort, reflecting the reduced complexity of design (and related design verification
testing) change implementation realized when going from NASA development to NASA
experimental hardware production. The $6M is treated as hardware for costing purposes, since it
is a commodity purchased out-of-house. The estimate of Rocketdyne actuator design and design
verification testing (DVT) "support to vendor" labor for actuators is 66,000 hours. Both the valve
and the actuator efforts are estimated to require 48 months of schedule.

Ignitors: Ignitor costs considered a parallel effort of preparing two styles of ignitors for the target
ICHM application. This is considered since 2 different thrust levels are being considered for the
OTVE implementation, and different styles of ignitors are better suited for each respective thrust
level. A 20Klb configuration would accommodate an au gmented spark ignitor (ASI)
configuration, where the smaller injector faceplate and injector element diameters of the 7.5Klb
OTVE would require a plasma torch ignitor. For either style ignitor, a three unit basis was used
for material estimating, two for the main combustion chamber redundant ignitor configuration, and
one spare. For the ASI, $15,000 each was used for material cost, plus 2000 hours to adapt the
current level 7 design. For the plasma torch ignitor, material basis was $20,000 each, plus 4000
hours for adapting the current level 6 article design. The time duration required for either ignitor
development is 12 months.
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Software/Algorithms

These development cost estimates were based on complexity factors and ICHM adaptation effort
applied to the SSME controller software. Software functions were defined in terms of software
lines of code. This was translated to cost using an "hours per line of code” conversion factor on
the "adapted, complexity-factored" lines of code for the sum of ICHM software functions.

Software Estimating Guidelines

This activity started with considering how many hours per software line of code (SLOC), are
required to adapt similar code to level six, where the existing code is at a specific technology
readiness level. The assumption used is that the software code should be refined enough for
“expensive asset" end uses since the Focused Testbed Engine and test stand for ICHM application
would be of substantial value. Software development methods (degree of quality assurance,
testing, etc.) for the expensive asset category are those which are currently followed for propulsion
systems used for launching expensive satellites, in un-manned spacecraft. Other types of end uses
are non-flight, and manned flight.

Hours 1o adapt each SLOC to ICHM level 6
4.0 7
5.4 6
5.6 5
5.8 4
6.0 3
6.2 2
6.4 1

A complexity factor (typically between 1.0 and 1.4), was developed relative to the SSME
functions, to quantify the relative degree of complexity in implementing similar ICHM functions.
The hours/SLOC was multiplied by this complexity factor, along with the number of lines of code
in a given function.

Thus: (Hours/SLOC for adapting a function to ICHM to level 6) x (complexity factor) x (number
of lines in a function) = hours of labor per software function. The results of using this method on
each function were summed to give the total estimated hours of labor, which is 86396 hours.
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CONCLUSION

An ICHM system was conceived for use on a 20K1b thrust baseline OTV engine. The approach to
this conception was to provide the requisite ICHM functions in a configuration with minimal
elements and applying current technologies wherever possible.

This report described how the ICHM functions were derived from flowing down requirements
from the statement of work and other OTV engine or ICHM documents. The elements of an
ICHM were identified and listed, and these elements were described in sufficient detail to allow
estimation of their technology readiness levels.

The ICHM elements were assessed in terms of technology readiness level, and supporting rationale
for these assessments was presented.

The remaining development cost for development of the minimal ICHM system to technology
readiness level 6 were estimated. The estimates were based on similar program activities and are
within an accuracy range of plus or minus 20%. The cost estimates cover what is needed to
prepare an ICHM system for use on a focussed test bed for an expander cycle engine, excluding
support to the actual test bed firings.

The system which was described represents a minimal system, with potential for future growth in

both capability and incorporation of advances. The estimated cost represents a reasonable amount
of resources which could be applied to allow a demonstration of the ICHM by the year 2000.
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APPENDIX 1, ELECTRONICS DESIGN GROUND RULES

Controller Electronics Hardware Design Groundrules

1. Use hybrids to reduce size of temperature and pressure circuits.
A. Programmable constant current supplier
B. Electronic aliasing filters
2. Use .050" pin to pin spacing - not flown in space yet.
3. Use ramp clamps to get heat to side rails.
A. Use electrical heaters
B. Use electrical coolers if required
4. Assume SSME card for pricing.

CONTROLLER CIRCUIT CARD DIVISIONS
INPUT PROCESSING CARDS
IEI/IE2/IE3 8 temperature channels (programmable)

8 pressure sensor channels
8 self test inputs

IE4 6 vibration processor channels

IES 8 speed/flow measurement units
CONTROL PROCESSOR CARDS

CP1 Vehicle interfaces

CP2 Control

CP3 Mass memory (Maintenance monitoring)
OUTPUT PROCESSING CARDS

OEl1 Position feedback and EMA command drivers

OE2/OE3 4 solenoid and 2 igniter drivers
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POWER SUPPLY CARDS
PS1 Similar to A2 of SSME Block II PS (Regulator)
PS2 Similar to A4 of SSME Block II PS (Transformer)
PS3 Similar to A4 of SSME Block II PS (Power)
PS4 Voltage monitor and Thermal control (1/2 VM1 card in
SSME Block II)
MODEL
Ml Processing card for analytical redundancy model

GENERAL OTV CONTROLLER DESIGN TASKS

1. Requirements Definition

A. Write a hardware specification
B. Write a software specification

2. System Design

A. Set architecture
B. Functional allocation
C. Implementation approach
1. Select logic family, self checking microprocessors, data
busses
2. Memory study (nonvolitale memory)
D. Electrical Design
E. Mechanical Design
1. Thermal
2. Packaging

3. Brassboard (2) Use prototype cards

4. Prototype

5. Qualification Unit - perform testing in simulated flight environment

RI/RD 91-150



Page 63

6. Software Development

A. Design IE1,2,3,4,5,CP1,2,3,0E1,2,3,M1
B. Test

CIRCUIT CARD DESCRIPTIONS AND DESIGN TASKS
INPUT ELECTRONICS
[E1/IE2/IE3 - Temperature/pressure card - Has temperature and pressure interface circuits with
A/D, microcontroller, analog multiplexer, and the bus interface electronics. The interface circuits

include hybrid designs.

IE4 Vibration processor card - Has accelerometer input interface circuits,
tracking filters, microcontroller and bus interface circuits.

IES Speed/flow card - Has the speed/flow interface circuits, time measurement
circuits, and bus interface electronics. Time measurement units may be microcontroller based.

CONTROL ELECTRONICS

CP1 Vehicle interface card - Has 3 serial to parallel interfaces for redundant
communication between the vehicle and control processor.

CP2 Control processor card - Has the main self-checkin g control processor
including program memory and internal bus electronics.

CP3 Mass memory card - Has the volatile memory - that is sized to record all
measurements during engine operation for processing after engine cutoff.

OUTPUT ELECTRONICS
OEl Position control card - Has a microcontroller, memory, position measurin g

circuits, A/D converter for self test, analog interface drivers to EMA modules and bus electronics.
The power driver circuits are to be in the EMA assembly.,
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OE2/0OE3 Device driver card - Has microcontroller, memory, 4 smart solenoid
drivers, igniter command circuit, igniter monitor circuit, and bus interface electronics.

POWER SUPPLY ELECTRONICS

PS1/PS2/PS3 Power supply cards - Will convert input power to logic and analog voltages
required to power controller. Does not power EMA's or regulate solenoid or igniter power.

PS4 Voltage monitor and Thermal card - Monitors power supply performance,
watchdog timers, and the thermal regulator for controlling heater/cooler.

MODEL

M! Model card - Contains processor, memory, bus interface, reads all
measurements, and predicts performance in real time as an analytical redundancy channel.

Design Tasks for all cards listed :

1. Design to specification

2. Preliminary design - Review

3. Breadboarding of critical circuits
4. Card testing specification

5. Prototype card testing

6. Integration into brassboard

7. Final design release

8. Fabricate cards
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APPENDIX I1 NO. — 750-0001
excerpts from Rocketdyne Drawing Requirements Manual Reviszo: 21 Dee 1973
GINEERING DRAWINGS - CATEGORIES AND LSES PAGE 4 Page 65
TABLE | DRAWINGS AND HARDWARE - CATEGORIES AND USES
CATEGORY DRAWING AND ORDER CHANGE QA INSP. SQUAWK CHANGE
PART NUMBERS PTS. 8Y PTS. BY REQMTS. DISPOS. BY DRAWING 8Y
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O 1
® | ® ®
I
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MIL-D-1000A) SUPPLIER PT. NO. @ PLAN @ OR PER PLAN @
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PROD. PROTOTYPE
& LIMITED PROD. R123456-X XX €0 EQ & OWG PRODUCTION MATL. AEVIEW EO & DWG
(LEVEL 2 PER RE1234-XX REVISION B8OARD REVISION
MIL-D-1000A)
w
PRODUCTION
R123456-XXX EO & DWG MATL. REVIEW EO & DWG
(LEVEL 3 PER EO PRODUCTION
RE1234.XX N BOARD REVISION
MIL-D-1000A} REVISIO °
v
8R123456-XXX ENGINEER
N
TEST SUPPORT BRE1234-XX (OR) EQ :25};&? ;F;OPDEL;C:SN SIGN-OFF, Eg\?,:,\g:
SUPPLIER PT.NO. (A OR PER PLAN @
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6R123456-XX X ENGINEER
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R e I T e r S B C N o
. . /-\’ c E c ]
O © ® ©
P
EXPERIMENTAL- 7R123456-XXX X-EQ & X-EQ, 25.R, 0';“ PLAN
IN-HOUSE ONLY TRE1234-XX 25-R & OWG AS SPECIFIED ENGINEER X-EO & DWG
(USE CAT Il FOR SUPPLIER PT. NO, @ ORPER | REVISION | gy x o0 & SIGN-OFF REVISION
DEL TO CUST) X-EQ RIXXXXX PLAN@ 25.1
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APPENDIX II cont'd

ENGINEERING DRAWINGS - CATEGORIES AND USES

TABLE I NOTES

DWG_CAT:
I  oNumbers assigned and contrclled by
‘ '‘Advance Projects and Laser Engineerinc
Desiagn functions. Hardware is used tc
evalua*te conceptual approaches and is not
normally deliverable as Rocketdyne
products. Drawings and parts Fer II =hru

II

IIT

Iv

vV E VI

VII

IV may be used, as appropriate, and Far«s
ordered per I. Changes to these garts,
inspection and squawk dispositions, and
drawing changes shall be cer the
requirements specified for IT thru IV
respectively unless reidentified per I.
"Releasina EN's" will be prepared by the
Design function to have drawing originals
microfilmed and retained in tre
Engineering Bocument Repository.

Drawing numbers assigned and affixed ty
Numbers Assignrent. Hardware may ke
deliverable for customer experimentation.
Drawings and parts per III and IV may te
used, as appropriate, and parts ordered
per II. Cchanges to the se parts,
inspection and squawk dispositions, and
drawing changes shall be per III and IV
unless reidentified per II.

Drawing numkters assiqned and affixed by
Numbers Assignment. Only III and 1V
hardware may be used in the groduct.
GSE/AGE will normallv ke ordered in this

Cateqory (Level 2) and are assigned "RG"
numbers per DFM 742-0001.

assigned and affixed Ly
Only IV drawings and
hardware are used in the FEgroduct.
Supplier hardware shall be "controlled"
with sSpecification Contrcl Drawings and
Source Contrcl Drawings.

Drawing numbers
Numbers Assignment.

assigned and affixed by
Hardware is used ¢tc¢
support testing/evaluation of hardware
for I thru IV projects and may te
deliverable for 1like activities by the
customer. Drawings and Parts TII, IIT,
and v may be used as corgonents.
Changes to such parts, 1Inspection ard
squawk dispositions shall te per 1I, III,
and IV as applicable. Excluded from Vv
are tools, fixtures, and devices for
which Manufacturing, Quality Assurance,
or Facilities and Industrial Engineering
are responsitle.

Drawing numbters
Numbers Assignment.

Drawing numbers assigned and affixed by
Numbers Assiqnment. Crawings and
hardware are not deliverable and are used
by DED functions to simulate an item fcr
experimentation only leading to desigr
solutrions for ITI and IV. These drawings

A

®
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shall not be used to define and fabricate
complete products or product compcnents.
Originating Engineers are personally
responsible for providing originals tc
Engineering Release for recording,
microfilming and retention in the
Engineering Cocument Fepository.

Comercial/Supplier rparts may be used by
direc+ call-out for Category I, II, v, VI
and VII gprojects. Specification Contrcl

Drawings and Source Control Drawings
shall be used for III and IV crojects
unless specifically exemgted 3% the
contract and so stipulated in the
Engineering Flan of Acitcn (EPCA) .

Redlining of prints requires the
authorizing Engineer's signature and
date. This is not recommended as a
general practice due to pctential

loss/misinterpretation of design soluticr
definition.

When authorized by the EPOA for *+he
Proqram or Project, Engineering %on-+he-
spot" changes to drawings and parts for
II and IV will ke defined ty EC. The EC

will bhe signed by the Engineer and will
include a statement similar to the
following:

"ON-THE-SPOT CHANGE NADE TO (Enter
the part number and serial number cr
Manufacturing Work Order Nurter as
applicable.)™

The originating Engineer is personally
responsible for providing EO originals tc
Engineering Release for release. FRelease
action, distribution of copies, and
atrtachment to drawings shall ke the same
as for other EO's for the crroject.

Squawks mray be dispositioned by assigned
Engineers by siqgn-off on the work crder
or receiving report and, when elected Ly
the Engineer/Project Engineer, docurented
by EO per (:5 - PReguiremrents to document
by EO or otWNer methods of dispositioning
will be estatlished by the EPOA.

R25-F-2's shall be forwarded to Date
Management who will enter data and patert
flysheet requirements for the crder.

When inspection requirements are nct
specified on the R25-R-2, Receiving QA
verifies for identification, damage and

count only.
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